

hemicals

光酸発生剂

サンアプロ(株) 研究所 副主任

中星拓人

[お問い合わせ先] サンアプロ(株) 東京営業所

光酸発生剤は、光照射により 分解し、酸を発生する機能を持 つ感光剤である。発生した酸が 活性種となり、カチオン重合や 架橋反応、脱保護反応などの触 媒となることから、光硬化性樹 脂用の開始剤やフォトリソグラ フィーに用いられる化学増幅型 レジスト用の光酸発生剤として 利用されている。なかでも光硬 化性樹脂は、飲料缶用下地塗 料、コーティング剤、3Dプリン ターなどに用いられる三次元光 造形用樹脂、光硬化型接着剤、 半導体や液晶用のネガ型レジス トなど幅広く実用化されてい る。そのため、光硬化性樹脂の

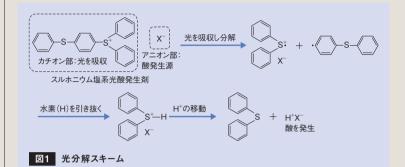
加工条件や必要物性も多種多様 であり、光酸発生剤に求められ るニーズも多岐にわたる。本稿 では、光硬化性樹脂における光 カチオン重合開始剤としての役 割を中心に、近年開発した光酸 発生剤『VC-1』『ES-1』シリー ズについて紹介する。

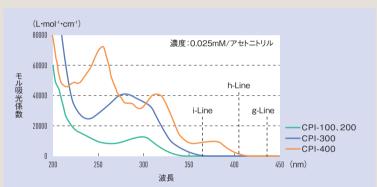
光硬化性樹脂について

光硬化性樹脂は、光を短時間 照射するだけで硬化する樹脂で ある。熱硬化に比べ、硬化時間 の短縮、設備の小型化、省エ ネ、無溶剤などの特長があり、 生産性の向上や環境負荷低減が 可能な材料である。照射する光

としては高圧水銀灯が一般的 で、近年では透過性が高い長波 長光のLEDや青色レーザー光 など多様化してきている。光硬 化性樹脂には、ラジカル重合型 とカチオン重合型とがあり、一 般的にラジカル重合にはアクリ ル樹脂、カチオン重合にはエポ キシ樹脂やオキセタン、ビニル エーテル化合物が用いられる。 なかでもエポキシ樹脂は、靭性 や電気絶縁性に優れるため、電 子材料用の光硬化型接着剤やネ ガ型レジストとして好適であ る。カチオン重合型の光硬化性 樹脂には、重合開始剤として光 酸発生剤が利用されている。カ

表1 光酸発生剤の代表例


光カチオン重合開始剤 〈当社品〉高純度モノスルホニウム塩 〈従来品〉下記2種の混合物 スルホニウム塩系 CPI-100P(X=PF6) CPI-101A(X=SbF₆) X=CF3SO3,C4F9SO3 CPI-200K (X=(Rf) nPF_{6-n}) X=PF₆,SbF₆ ヨードニウム塩系 X=CF3SO3,C4F9SO3 非イオン系 酸発生源 光を吸収


チオン重合型光硬化性樹脂は、 ラジカル重合型と比較して、① 酸素による硬化阻害を受けな い、②開環重合のため硬化収縮 が小さい、③接着性など硬化物 の物性に優れる、などの特長が ある。硬化収縮によるひずみは 加工物が大きくなるほど顕著に 表れるため、高い寸法精度が必 要な用途ほどカチオン重合型が 好まれる。一方、欠点として、 ラジカル重合型よりも硬化速度 が遅い、水分による硬化阻害を 受けやすい、といった点が挙げ られる。硬化速度は活性種とな る酸の量や酸強度によってコン トロール可能なため、硬化速度 を改善するアプローチとして、 光酸発生剤には光分解による酸 発生率や発生酸の重合活性の向 上が要望されている。硬化促進 のために光照射後に加熱する場 合があるが、加熱や残存酸に起 因する樹脂の変性により着色し てしまうケースもあり、光学用 途等の透明性が重視される用途 では着色の抑制が求められる。

当社の光酸発生剤

光酸発生剤は、光を吸収する部分と酸の発生源となる部分から構成される。一般的な光酸発生剤は、スルホニウムイオンやヨードニウムイオンをカチオン部分とするオニウム塩である(表1)。これらのオニウム塩では、カチオン部が照射された光を吸収・分解し、アニオン部に由来する酸が発生する(図1)。

つまり、酸の発生率はカチオン 部に、発生酸の重合活性はアニ オン部の構造に大きく依存す る。当社の光酸発生剤はカチオ ン/アニオンの組み合わせを自 由にカスタマイズでき、多様な 用途に最適な形で提供すること が可能である(図2、図3)。光 酸発生剤の酸発生率(光分解率) を向上させるには、いくつか因

シリーズ名	モル吸光係数(L·mol¹·cm⁻¹)			相対光分解率**
	365nm(i-Line)	405nm (h-Line)	436nm (g-Line)	伯别元分群华
CPI-100,200	80	0	0	1.0
CPI-300	600	0	0	2.3
CPI-400	9600	1380	20	4.1

※CPI-100、200シリーズの光分解率を1.0とした時の相対値

〈光分解率の測定条件〉

露光した光酸発生剤のアセトニトリル溶液をHPLCで分析し、カチオンの分解率を測定・光源:高圧水銀灯(340nm以下をカット) ・露光量:150mJ/cm²(365nm)

図2 当社シリーズ製品(従来品)のUV-vis吸収スペクトルと相対光分解率

当社製品をお取り扱いいただく際は、当社営業までお問い合わせください。 また必ず「安全データシート」(SDS) を事前にお読みください。 使用される用途における適性および安全性は、使用者の責任においてご判断ください。

 $H(Rf)_nPF_{6-n}=HB(C_6F_5)_4 \ge HSbF_6 > HPF_6 > HBF_4 > CF_3SO_3H > H_2SO_4(硫酸)$

図3 酸の強さとカチオン重合活性

子があるが、一般的なアプロー チとしては照射光線に対する光 吸収を大きくすることである。 しかしながら光吸収が大きすぎ る場合には、照射光が光硬化性 樹脂の表面付近で強く吸収され る(光透過率が下がる)ため、 内部にまで光が届かず硬化不良 となるケースがある。光透過率 は膜厚にも依存するため、この 課題は厚膜加工であるほど顕 著である。その場合、光酸発生 剤には光吸収を上げずに光分解 率を向上させる必要がある。こ のような背景のもと、当社では 近年、薄膜用途向けに『VC-1』 シリーズ、厚膜用途向けに 『ES-1』シリーズをそれぞれ 開発した。

『VC-1』 シリーズ

当社の従来シリーズ製品では 『CPI-100、200』<『CPI-300』< 『CPI-400』の順に酸発生率(光

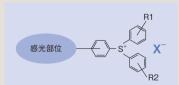


図4 VC-1シリーズのカチオン構造

図6 シリーズ製品外観 (左:VC-1、右:CPI-400)

分解率)が高くなり、『CPI-400』シリーズが最も優れる(図3)。しかしながら、『CPI-400』シリーズは可視光域に吸収を有するため材料自体が黄色を呈しており(図6)、透明性を求められる光学用途等では使用が制限される。そこで当社は、カチオン部に最適化した感光部位を導入することで、高い光分解率と可視光域での透明性を両立した『VC-1』シリーズを開発した(図4)。『VC-1』シリーズは、高圧水銀灯の主な輝線であるi線

(波長365nm) に対する吸収が大きく(図5)、対して可視光域(380nm以上)の吸収は小さいため透明性に優れている(図6)。また、エポキシ樹脂を用いた光硬化性評価において、『CPI-400』シリーズ同等の硬化性を示すことから高い酸発生率を有している(図7)。『VC-1』シリーズはさまざまなアニオンとの組み合わせが可能であり、なかでも当社独自開発のアニオンと組み合わせた『VC-1FG』は光硬化後の加熱処理における着

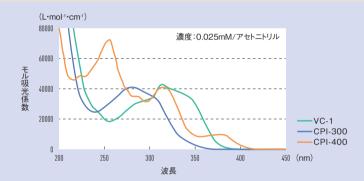
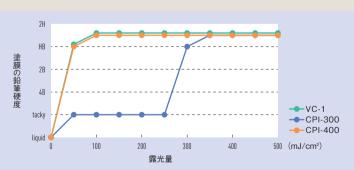



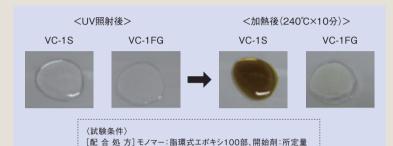
図5 各シリーズ製品のUV-vis吸収スペクトル

(試験条件)
[配 合 処 方] モノマー:脂環式エポキシ100部
 光酸発生剤: CPI-300 0.3部を基準に同モル量添加(発生酸は同一)
[光照射条件] 光源: 高圧水銀灯(340nm以下をカット)
 露光量: 所定量(365nm光量計にて計測)
 配合液塗布厚: 40μm、基材: PETフィルム
[評 価 方 法] 光硬化能は、光照射から40分後の塗膜硬度により評価

図7 各シリーズ製品を使用した光硬化性樹脂のUV硬化性比較

色抑制効果が優れている。一般 的に酸強度が高いほど硬化速度 は速くなるが、加熱時に樹脂の 変性を引き起こしやすく着色が 生じる原因となる。『VC-1FG』 では、発生した強酸が加熱によ り弱酸へと変化するため、樹脂 の着色を抑制できる(図8)。

『ES-1』 シリーズ

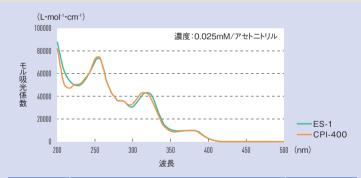

先にも述べたが、光硬化性樹 脂が厚膜となる場合では、内部 まで硬化させるために光透過率 を上げることが重要である。そ のためには、光吸収を大きくす ることなく酸発生率 (光分解 率)を向上させる必要がある。 『ES-1』シリーズは、『CPI-400』 シリーズのさらなる構造最適 化により、同様の光吸収特性を 有していながら、より高い光分 解率を示す(図9)。また、酸発 生率が高いことから『CPI-400』 シリーズ使用時よりも添加量を 低減でき、光硬化性樹脂の光透 過性を向上させることができる。

今後の展開

冒頭でも述べたように光酸発 生剤が使用される用途は多岐に わたり、今後も多様なニーズに 対応した製品を開発していく。 「光」は紫外線だけでなく、透過 性の高い近赤外線の利用も注目 されている。また近年、光酸発 生剤には優れた機能だけでなく、 高品質品を安定的に供給し続け ていくことが求められている。 特に、半導体用レジスト分野で は徹底した不純物管理がなされ ており、最先端領域では光酸発 生剤中の金属成分含有量がppb オーダーであることが求められ る。今後、半導体の需要はます ます拡大していき、光酸発生剤 の高品質化のみならず、当社で は次世代品の開発や医療・バイ オ、環境など新分野への応用展 開も検討中であり、より価値の ある製品を提供していきたい。

参考文献

- 1) 三洋化成ニュース No.502 (2017) パフォーマンスケミカルス 127 「光酸発生剤」高嶋祐作著
- 2)「UV・EB硬化技術の最新開発動向」 シーエムシー出版



「光照射条件] 光源: 高圧水銀灯(340nm以下をカット)

基材:1mm厚ガラス板 [加 熱 条 件] 240℃ホットプレートにて10分加熱(大気下)

露光量: 2000mJ/cm² (365nm光量計にて計測)

図8 VC-ISとVC-1FGを使用した硬化膜の加熱前後

シリーズ名	モル吸光係数(L·mol ^{·1} ·cm ^{·1})			┃ ┃ 相対光分解率 [※]
	365nm(i-Line)	405nm (h-Line)	436nm (g-Line)	作別ルカ群拳
CPI-400	9600	1380	20	1.0
ES-1	9540	1840	160	3.0

※CPI-400シリーズの光分解率を1.0とした時の相対値

〈光分解率の測定条件〉

- 光照射前後の溶液をHPLCにて分析し、カチオンの面積減少率から分解率を算出
- ・光源: 高圧水銀灯(390nm以下をカット)
- ·露光量:150mJ/cm²(405nm照度計にて計測)

図9 ES-1シリーズとCPI-400シリーズのUV-vis吸収スペクトルと相対光分解率

当社製品をお取り扱いいただく際は、当社営業までお問い合わせください。 また必ず「安全データシート」(SDS) を事前にお読みください。 使用される用途における適性および安全性は、使用者の責任においてご判断ください。